
Control of an automatic parking gate

Jean-Marc ROUSSEL
jean-marc.roussel@lurpa.ens-cachan.fr

LURPA,ENS Cachan
61, avenue du Prsident Wilson

94235 CACHAN Cedex

April 20, 2012

1 Introduction

This document presents a case study made according to the algebraic synthesis method developed in LURPA.
We propose to obtain the control law to implement into a Programmable Logic Controller (PLC) from its
specifications given in natural language, by solving a Boolean equations system of switching functions.

We suppose that the expected control law can be expressed with recurrent Boolean equations as presented
Figure 1. This generic model has p Boolean inputs (ui), q Boolean outputs (yj) and r Boolean state variables
(xl). These inputs and outputs correspond to the inputs and outputs of the controller for which the control
laws must be designed. The state variables, used to express the sequential behavior, will be represented
with internal variables of the controller.
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yj [k] = Fj(u1[k], · · · , up[k], x1[k − 1], · · · , xr[k − 1])

xl[k] = Fq+l(u1[k], · · · , up[k], x1[k − 1], · · · , xr[k − 1])

Figure 1: Generic model of sequential systems expressed with recurrent Boolean equations

The behavior of this model can be fully defined according to the definition of (q + r) switching functions
of (p + r) variables. Even if this representation is very compact (the r Boolean state variables allow the
representation of 2r different states), the construction by hands of these switching functions has always been
a very tedious and error-prone task [Huf54]: the model presented Figure. 1, admits 2p inputs combinations,

can send 2q outputs combinations and can express (22
(p+r)

)(q+r) sequential behaviors.
Nevertheless, thanks to recent mathematical results obtained for Boolean algebras [Rud01], [Bro03], the

automatic algebraic synthesis of switching functions is now possible. We propose to obtain the control law
to implement into a PLC by solving a Boolean equations system of switching functions. Details of the
proposed method can be found in [HRL08a] [HRL08b] [Hie09].

To avoid tedious symbolic calculus and to help the designer during the different steps of this synthesis
method, a prototype software tool has been developed in Python. This tool1 performs all the computations
required for inconsistencies detection and control laws generation. This enables the designer to focus only
on application-related issues. For ergonomic reasons, complementary works were also developed in order be
able to represent the synthesized control law with a state model.

1Case studies are available: http://www.lurpa.ens-cachan.fr/isa/asc/case studies.html
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1.1 Notations used

To avoid confusion between Boolean variables and Boolean functions of Boolean variables, each Boolean
variable bi is denoted as bbi. The set of the two Boolean values b0 and b1 is denoted as: B = {b0, b1}. The
classical two-element Boolean Algebra is ({b0, b1},∨,∧,¬, b0, b1).

Let Fn(B) be the set of the 22
n
n-variable switching functions. The Boolean Algebra of n-variable

switching functions is (Fn(B),+, ·, , 0, 1):

• 0 and 1 are the 2 constant functions:

0 : Bn → B

(bb1, . . . , bbn) 7→ b0

1 : Bn → B

(bb1, . . . , bbn) 7→ b1

• +, ·, are three closed operations defined as follows:

Op. + : Fn(B)2 → Fn(B)

(f, g) 7→ f + g

Op. · : Fn(B)2 → Fn(B)

(f, g) 7→ f · g
Op. : Fn(B)→ Fn(B)

f 7→ f

where ∀(bb1, . . . , bbn) ∈ Bn,

(f + g)(bb1, . . . , bbn) = f(bb1, . . . , bbn) ∨ g(bb1, . . . , bbn)

(f · g)(bb1, . . . , bbn) = f(bb1, . . . , bbn) ∧ g(bb1, . . . , bbn)

f(bb1, . . . , bbn) = ¬f(bb1, . . . , bbn)

Fn(B) can be equipped with a partial order relation, called Inclusion-Relation defined as follows:

x ≤ y ⇔ x · y = x
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2 Control system specifications

The studied system is the controller of automatic parking gate. Users could open the gate by activating
the remote control. The gate moves thanks to an electrical asynchronous motor controlled by two distinct
contactors.

2.1 Inputs and outputs of the controller

The Boolean inputs and outputs of this controller are given in Fig. 2. Each movement of the gate is controlled
thanks to a distinct contactor (outputs: ‘open’ and ‘close’). The controller is informed of the position of the
gate thanks to two on-off switches (inputs: ‘go’ and ‘gc’). A sensor permits to detect the presence of a car
in front of the gate (input: ‘car’). Users could open the gate by activating the remote control (input: ‘rc’).

Control of
the automatic
parking gate

(On-off switch: Gate fully Closed) gc

(On-off switch: Gate fully Open) go

(Sensor: Car detected) car

(Sensor: Remote Control activated) rc

open (Control of the contactor used to open the gate)

close (Control of the contactor used to close the gate)

Figure 2: Inputs and outputs of the controller to design

2.2 Expected behavior

The expected behavior of the control system regarding the application requirements can be expressed by
the set of assertions given hereafter:

• F1: When the remote control is activated, the gate opens.

• F2: If the gate is not fully closed, the detection of a car brings about the opening of the gate.

• F3: The opening of the gate must be full: to stop the opening of the gate, it is necessary that the
gate is fully open.

• F4: When the remote control is activated, the gate can not be control to close.

• S1: To close the gate, it is necessary that no car is detected.

• T1: The gate must never be simultaneously controlled to open and to close.

• T2: When the gate is fully open, the gate must never be controlled to open.

• T3: When the gate is fully closed, the gate must never be controlled to close.

Assertions F1 to F4 are functional requirements. Assertion S1 was introduced to protect users. Assertions
T1 to T3 are technical requirements imposed by the use of a electrical motor controlled by two distinct
contactors.

2.3 Control laws to design

Our approach does not permit to identify automatically which state variables must be used. They are given
by the designer according to its interpretation of the specification.

For the automatic gate, we propose to use two state variables: one for each output. According to this
choice, we have only two switching functions to synthesize. However, each function is a 6-variable switching
functions as the control laws has 4 inputs and 2 state variables. The generic form of the control law we want
to design is: 

open[k] = Open (gc[k], go[k], car[k], rc[k], open[k − 1], close[k − 1])

close[k] = Close (gc[k], go[k], car[k], rc[k], open[k − 1], close[k − 1])

open[0] = b0

close[0] = b0
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This simple model permits to express 2128 ((22
6
)2) different control laws. We propose to find the control law

which satisfies the expected behavior given Section 2.2 by solving a Boolean equations system of 6-variable
switching functions.

3 Algebraic synthesis of the control laws

The first step of the proposed method consists to formalize the expected behavior with relations between
formula of 6-variable switching functions. For this case study, we have 6 specific switching functions2:

• The 4 switching functions (GC, GO, Car and RC) which characterize the behavior of the inputs of
the controller and are defined as follows:

GC : B6 → B

(gc[k], . . . , close[k − 1]) 7→ gc[k]

• The 2 switching functions (pOpen and pClose) which characterize the previous behavior of the state
variables of the controller and are defined as follows:

pOpen : B6 → B

(gc[k], . . . , close[k − 1]) 7→ open[k − 1]

In our case, only 2 switching functions must be designed (Open and Close). They represent the unknowns
or our problem.

Remark: As Open and pOpen represent the behavior of ‘open’ at respectively times [k] and [k − 1], the

starting of the opening of the gate corresponds to (Open · pOpen) and the stopping of the opening of the

gate corresponds to (Open · pOpen).

3.1 Formalization of requirements

Assertions describing the expected behavior of control systems in natural language can be translated into
formal statements thanks to the relations Equality and Inclusion.

• F1: When the remote control is activated, the gate opens.

RC ≤ Open

• F2: While the gate is not fully closed, the detection of a car brings about the opening of the gate.

GC · Car ≤ Open

• F3: The opening of the gate must be full: to stop the opening of the gate, it is necessary that the
gate is fully open.

(Open · pOpen) ≤ GO

• F4: When the remote control is activated, the gate can not be control to close.

RC ≤ Close

• S1: To close the gate, it is necessary that no car is detected.

Close ≤ Car

• T1: The gate must never be simultaneously controlled to open and to close.

Open · Close = 0

2These functions are the 6 projection-functions of F6(B).

4



• T2: When the gate is fully open, the gate must never be controlled to open.

GO ≤ Open

• T3: When the gate is fully closed, the gate must never be controlled to close.

GC ≤ Close

3.2 Consistency checking

The result of the formalization of all the requirements is composed of a set of relations:

F1: RC ≤ Open

F2: GC · Car ≤ Open

F3: (Open · pOpen) ≤ GO

F4: RC ≤ Close

S1: Close ≤ Car

T1: Open · Close = 0

T2: GO ≤ Open

T3: GC ≤ Close

For this problem, the method we propose permits to prove that the given requirements are inconsistent.
the result given by our software tool was the following inconsistency condition:

I = (GO · RC) + (GC ·GO · Car)

Since requirements are declared as inconsistent, we have to give complementary information to precise our
specification. By analyzing each term of this formula, it is possible to detect the origin of the inconsistency:

• (GO ·RC): What appends if the remote control is activated when the gate is fully open? We consider
that the requirement T2 has priority on requirement F1 (for security reasons) and we have added the
priority rule: T2 � F1.

• (GC ·GO ·Car): What appends if a car is detected when the gate is fully open? We consider that the
requirement T2 has priority on requirement F2 (for security reasons) and we have added the priority
rule: T2 � F2.

The result of the formalization of all the requirements is composed of a set of relations and priority rules:

Requirements:

F1: RC ≤ Open

F2: GC · Car ≤ Open

F3: (Open · pOpen) ≤ GO

F4: RC ≤ Close

S1: Close ≤ Car

T1: Open · Close = 0

T2: GO ≤ Open

T3: GC ≤ Close

Priority rules:{
T2� F1

T2� F2
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3.3 Equation solving

Thanks to the last mathematical results, we are able to obtain automatically the different solutions of this
problem. The parametric for of the solutions is:{

Open = GO · (RC + pOpen + GC · Car) + p1 ·GO p1 ∈ F6(B)

Close = p2 ·GC · Car · RC · (GO + pOpen · p1) p2 ∈ F6(B)

A particular solution has to be chosen among the set of solutions. For that, a specific value of each
parameter of the general solution has to be fixed. In some cases, optimal solutions, according to given
criteria, can be automatically found ([Ler11]). For the automatic gate, we can consider:

• The opening of the gate is made only if it is necessary.

• The closing of the gate is made when it is possible.

We have chosen the solution which minimizes the opening of the gate (the parameter p1 is fixed to 0)
and maximizes the closing of the gate (the parameter p2 is fixed to 1). The solution of this problem is:{

Open = GO · (RC + pOpen + GC · Car)

Close = GC · Car · RC · (GO + pOpen)

4 Obtained contol laws

4.1 Representation with recurrent Boolean equations

The control laws presented hereafter was obtained by translating the expression of the unknowns according
to the projection-functions into relations between recurrent Boolean equations.

open[k] = ¬go[k] ∧ (rc[k] ∨ open[k − 1] ∨ ¬gc[k] ∧ car[k])

close[k] = ¬gc[k] ∧ ¬car[k] ∧ ¬rc[k] ∧ (go ∨ ¬open[k − 1])

open[0] = b0

close[0] = b0

This control law was implemented into a PLC with the Ladder Diagram language [IEC03]. The code is
composed of only three rungs (Figure 3).

Rung 1: Command of Open Rung 3: Update previous value of Open

| go rc open | | open pOp |

+--|/|--+--| |-------+-----------( )---+ +--| |---------------------------( )---+

| | gc car | | | |

| +--|/|--| |--+ |

| | pOp | |

| +--| |-------+ |

| |

Rung 2: Command of Close

| gc car rc go close |

+--|/|--|/|--|/|--+--| |--+------( )---+

| | pOp | |

| +--|/|--+ |

Figure 3: Ladder Diagram of the code to implement into the PLC
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4.2 Representation with a state model

If recurrent Boolean equations are well-adapted for an implementation, the representation of the control
law with a state model simplifies the work of the designer. For this control law, the equivalent state model
(automatically built thanks to [Gui11]) is composed of three states only (Figure 4). Each state is defined
according to the set of emitted outputs. The six transition conditions are a Boolean expression of the inputs.
By construction, this state model satisfies all the requirements given Section 2.2.

0
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{open}

2

{close}

E0−1

E0−2

E1−0
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E0−1 = ¬go ∧ (rc ∨ ¬gc ∧ car)

E0−2 = ¬gc ∧ ¬car ∧ ¬rc

E1−0 = go ∧ (gc ∨ rc ∨ car)

E1−2 = go ∧ ¬gc ∧ ¬rc ∧ ¬car

E2−0 = go ∧ (rc ∨ car) ∨ gc ∧ ¬rc

E2−1 = ¬go ∧ (rc ∨ ¬gc ∧ car)

Figure 4: State model of the obtained control law

5 Conclusions

For this case study, the method we propose has allowed to find the control law for the pumping system. The
use of priority rules and optimization criteria has simplified greatly the formalization of the requirements.
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