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Technical report on Conformance Test of
Programmable Logic Controllers — Execution of

Minimum-Length Test Sequences
Julien Provost, Jean-Marc Roussel, Jean-Marc Faure

Abstract

Conformance test is a functional test technique which is aiming to check whether an implementation, seen as a black-box
with inputs/outputs, conforms to its specification. Numerous theoretical worthwhile results have been obtained in the domain of
conformance test of finite state machines. The optimization criterion which is usually selected to build the test sequence is the
minimum-length criterion. On the basis of several experiments, this technical report shows that this kind of test sequence may lead
to erroneous test verdicts when the implementation is a Programmable Logic Controller (PLC) that executes a control program.
The error rates that have been obtained for different configurations of the PLC under test are given as well as guidelines for
conformance test of PLCs from finite state machines.
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I. INTRODUCTION

Programmable Logic Controllers (PLCs) are industrial automation components that are widely used to implement control
functions, even in critical systems like power production and distribution, rail transport, chemical processes, water distribution,
etc. This explains why numerous research works have been carried out since more than ten years to develop methods that avoid
flaws to be introduced during the development of PLC software. These researches are based on two main approaches: model-
based (model-driven) engineering [1]–[3] and formal verification and validation (V&V) techniques [4]–[7] or a combination of
both [8]. Whatever the interest of the results obtained in these works, it must be noted that all of them are based on models.
Formal V&V techniques for instance have been applied to models of the specification of the control logic, in the form of IEC
60848 models, state-charts, Signal Interpreted Petri Nets, Net Condition Event Systems [9]–[11] or of PLC programs, in IEC
61131-3 languages [12]–[15].

However, validation of a real PLC which executes a control program requires the conformance test of this component be
performed, even if the specification and program models have been verified and validated, and a certified code generator has been
used to produce the executable code. Conformance test is a functional test, i.e. the system under test, named implementation, is
seen as a black-box (its internal structure is unknown) with observable inputs/outputs; the overall aim is to check whether this
implementation behaves as specified (Figure 1). Conformance test of PLCs is advocated by certification bodies and standards
[16], [17], which explains the growing interest of companies in several industrial domains for efficient hardware-in-the-loop
techniques [18]–[20] to improve the existing practices.

A promising solution to develop such techniques is to benefit from the results of the researches of the Discrete Event Systems
community in the domain of conformance test of formal models. In these works, the specification is a formal model: a Mealy
(or finite state) machine [21], a transition system [22], [23], or a timed automaton [24] for instance. The first formalism has
been selected for this study because it is well suited to the modeling of logic systems specifications; moreover, functional
correctness must be tested before time correctness. Conformance of the implementation, which is assumed to be represented as
another machine, to the specification requires a test objective be first defined. A classical test objective, when critical systems
are considered, is to cross at least once each edge of the directed graph that represents the structure of the machine; this permits
to check every state change from each state of the formal model. Then, the test sequence can be constructed from this model.
Several algorithms have been developed to build test sequences that meet this objective; a solution that minimizes the length
of the sequence, therefore the duration of the test if the duration of one test step is constant, was first presented in [25]. As
industrial specifications are not expressed in formal languages but in standardized, tailored-made languages, translation rules of
industrial specification languages into formal ones are to be developed in order to use these theoretical results for conformance
test of PLCs; this issue has been solved in [26] where a method to obtain from a Grafcet [27] an equivalent Mealy machine
is presented. The approach can be applied to other languages.
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Fig. 1. Place of the work in the life-cycle of PLC software

Another issue remains, however: the optimization criterion which is usually selected to build the test sequence (minimum
length) does not consider the technological features of the implementation. The aim of this technical report is to show, on the
basis of several experiments, that using a minimum-length test sequence for conformance test of PLCs may lead to erroneous
test verdicts, and to quantify the error rate for different configurations of the PLC under test.

The next section reminds how a minimum-length test sequence can be built from a specification expressed in the IEC 60848
Grafcet language. The execution of this sequence is addressed in the third section; as erroneous test verdicts can be yielded in
some cases, two sets of experiments are presented to find the origin of this issue and to quantify the error rate. The obtained
results are discussed and guidelines for conformance test of PLCs are given in the fourth section.

II. BACKGROUND: TEST SEQUENCE GENERATION FROM GRAFCET SPECIFICATION

The aim of the section is to define the notations used in this paper and to remind previous results. The notations and
definitions will be illustrated through an example introduced in the following subsection.

A. Example

Several event-based formalisms, like state automata and finite state machines, have been proposed to model sequential logic
systems; they have permitted to obtain worthwhile theoretical results in the domains of synthesis and analysis of DES (Discrete
Event Systems). However, when design, implementation and test of PLCs are considered, it is often more convenient to select
a modeling formalism whose inputs and outputs are logic variables, and not events, and where the transition conditions depend
on combinations of input values. This is the case in this paper, where the specification of the PLC’s behavior is represented
by a Grafcet.

Grafcet is a standardized graphical specification language [27] which is widely used in several industrial domains, like
railway transport, electrical power production, manufacturing industry, environment. A good scientific presentation of the main
features of the Grafcet modeling framework can be found in [26], [28], [29]. A Grafcet model describes the expected behavior
of a logic controller which receives logic input signals and generates logic output signals. A Grafcet (Figure 3) comprises steps,
graphically represented by squares, and transitions, represented by horizontal lines; a step can only be linked to transitions and
a transition only linked to steps. A step defines a partial state of the controller and can be active or inactive; hence, a Boolean
variable, named step activity variable and noted Xi, for step i, can be defined for each step. Actions may be associated to
a step; an action associated to a step is performed only when this step is active and then acts upon an output variable. A
transition condition must be associated to each transition; this condition is a Boolean expression which may include input
variables and step activity variables.

The example used in this paper is a parking gate. This gate should open pOGq when the remote control is activated prq and
should close pCGq once the vehicle pvq has left the area. Two sensors permit to detect whether the gate is fully opened poq or
fully closed pcq. To avoid damaging the vehicle or hurting people, the gate should re-open if a vehicle or people are detected
in the area while the gate is closing. The example is illustrated in Figure 2 and the specification of its behavior, defined in
Grafcet, is given in Figure 3. This specification describes the control of the two outputs OG and CG: OG (respectively CG)
is set when the step 11 (resp. 21) is active and reset when the step 10 (resp. 20) is active. It is composed of two graphs that
communicate via the variable X11; OG has priority over CG, which is mandatory for safety reasons, because it is not possible
to set CG once OG set (the transition from the step 20 to the step 21 cannot be fired when X11 is true).
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Fig. 2. Illustration of the example
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Fig. 3. Grafcet specification for the example given Fig. 2

B. Notations of the input and output combinations

A PLC owns n logic input variables and m logic output variables; the value of each of them is either true or false. 2n

input (2m output) combinations can then be constructed from this set of input (output) variables by assigning a weight to each
variable. An input combination cI will be represented in three different manners in this paper:


 The first representation, noted symbol(cI ), is the more compact one; symbol(cI ) is indeed an integer that belongs to
r0, 2n � 1s and is defined as follows:

symbol(cI ) =
n�1̧

i�0

cI rn� 1� is � 2pn�1�iq, where:

– cI rn� 1� is is an integer that belongs to r0, 1s and is equal to 1 if the ith input variable is true and 0 otherwise,
– 2pn�1�iq is the weight of this variable1.

This representation will be used in the graphical and tabular descriptions of a Mealy machine.

 The second representation, noted minterm(cI ), is a Boolean expression. A minterm is the conjunction of all the n logic

input variables in their positive or complemented form. This representation is very efficient for symbolic calculus.

 The third representation, noted 1pcIq, is that of the set of the only variables which are true for the given combination.
The same rules apply for the output combinations cO. Table I gives the correspondence between these representations for

the example introduced in Figures 2 and 3.

C. From Grafcet to Mealy machine

Conformance test of Mealy machines is a mature technique that previously yielded numerous sound results; good syntheses
on this topic are available in [21], [30]. This explains why this formalism was selected to represent formally the specification
model.

1) Principle of the translation: The figure 4 illustrates the results of the two phases of the construction of the formal
specification model; a detailed presentation of this construction method, without semantics loss, can be found in [26]. Only
the main features of these phases are reminded below.
a) The Grafcet is first translated into an automaton, called Stable Location Automaton, that describes the reachable state space

of the specification. A state (location) of this automaton represents a stable situation of the Grafcet as well as the outputs

1The weights are assigned arbitrarily to the variables.
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TABLE I
EQUIVALENCE BETWEEN THE DIFFERENT REPRESENTATIONS OF THE INPUT AND OUTPUT COMBINATIONS
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Fig. 4. Example of translation of a Grafcet into a Mealy machine. Left to right: Grafcet, Stable Location Automaton, Mealy machine

to set in this situation. Each transition is labeled with a Boolean expression on the input variables, condition to evolve from
a location to another one.

b) This intermediary model is then translated into a Mealy machine. Each location is directly translated into a state of the Mealy
machine but the transitions are expanded to obtain an enumerative representation; therefore a condition-labeled transition
gives rise to a set of symbol-labeled transitions.

The formal definition of the final model, Mealy machine that represents the PLC specification model, is given hereafter.
2) Definitions: Formally, a Programmable Logic Controller (PLC) can be defined by a 3-tuple (I,O,B) where:

 I is a non-empty set of logic inputs.

 O is a non-empty set of logic outputs.

 B is the behavior of the controller.
Since inputs are logic variables and not events, they can be combined together to give input combinations, respectively

outputs can be combined to give output combinations. If the cardinality of I (respectively O) is |I| (resp. |O|), there exist 2|I|

(resp. 2|O|) distinct input (resp. output) combinations cI (resp. cO). Let us note CI the set of the input combinations and CO

the set of the output combinations.
Using this definition of input and output combinations, the behavior of a PLC can be represented by a Mealy machine

(S, sInit, CI , CO, δ, λ), where:

 S is a non-empty set of states.

 sInit is the initial state, sInit P S.

 CI is the input alphabet, |CI | � 2|I|.

 CO is the output alphabet, |CO| � 2|O|.

 δ is the transition function, defined as follows:

δ : S � CI Ñ S
pss, cIq ÞÑ st � δpss, cIq

(1)


 λ is the output function, defined as follows:

λ : S � CI Ñ CO

pss, cIq ÞÑ co � λpss, cIq
(2)
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TABLE II
ENUMERATED REPRESENTATION OF THE TRANSITION AND OUTPUT FUNCTIONS: ps, cIq ÞÑ pδps, cIq, λps, cIqq

s: state
symbol(cI ) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sInit s3, 2 s2, 1 s2, 1 s2, 1 s3, 2 s1, 0 s1, 0 s1, 0 s1, 0 s1, 0 s2, 1 s2, 1 s1, 0 s1, 0 s1, 0 s1, 0

s1 s3, 2 s2, 1 s2, 1 s2, 1 s3, 2 s1, 0 s1, 0 s1, 0 s1, 0 s1, 0 s2, 1 s2, 1 s1, 0 s1, 0 s1, 0 s1, 0

s2 s2, 1 s2, 1 s2, 1 s2, 1 s3, 2 s1, 0 s1, 0 s1, 0 s2, 1 s2, 1 s2, 1 s2, 1 s1, 0 s1, 0 s1, 0 s1, 0

s3 s3, 2 s2, 1 s2, 1 s2, 1 s3, 2 s1, 0 s1, 0 s1, 0 s1, 0 s1, 0 s2, 1 s2, 1 s1, 0 s1, 0 s1, 0 s1, 0

By definition, the behavior B of a PLC is deterministic: there is only one initial state and δ and λ are two functions.
Moreover, to avoid misinterpretation errors during the test, the behavior B must be:


 completely defined: δ and λ are total functions2;

@ps, cIq P S � CI ,

"
D!δps, cIq P S
D!λps, cIq P CO

(3)


 limited to its reachable part;

@s P S, Drc0I , � � � , c
n
I s P C

�
I |

$&
%

s1 � δpsInit, c
0
Iq

@k ¥ 1, sk�1 � δpsk, ckI q
s � sn

(4)


 without transient evolution, i.e. no inputs change introduces successive changes of states or emitted outputs.

@ps, cIq P S � CI ,

"
δpδps, cIq, cIq � δps, cIq
λpδps, cIq, cIq � λps, cIq

(5)

3) Illustration on the example: The above definitions and properties will be illustrated on the example presented in Figure 4.
This example owns 4 logic inputs (c, o, r and v), and 2 logic outputs (OG and CG). Then, 16 input combinations (cI ) and
4 output combinations (cO) can be defined. Since the state space comprises 4 states (sInit, s1, s2 and s3), the transition and
output functions are defined on 64 couples ps, cIq. Table II gives an enumerated description of these functions. In this table
each line corresponds to a state s and each column to an input combination cI , represented by its symbol: symbol(cI ).

Each cell of the table contains the value of the couple (δps, cIq, λps, cIq). A circled couple means that the same state is
both source and target of the transition (self-loop structure: δps, cIq � s). The behavior given in table II is deterministic
and completely defined since every cell contains one and only one state name. This behavior does not contain any transient
evolution since the value of each cell is either a circled value or leads to a cell with a circled value (δps, cIq � s or
δpδps, cIq, cIq � δps, cIq). For example, when the active state is s1, for the input combination 0, the system evolves towards
state s3 (δps1, 0q � s3). Since δps3, 0q � s3, no other evolution is possible without a new change of input combination.

D. Test sequence generation

A test sequence is an ordered list of couples (input combination, expected output combination) which represents the external
view of the expected behavior of a PLC that executes a correct control code. Formally, a test sequence is defined as follows:�

pc0I , c
0
Oq, pc

1
I , c

1
Oq, ..., pc

n
I , c

n
Oq
�
P pCI � COq

� (6)

However, the input combinations ckI and the expected output combinations ckO are not independent. The expected output
combination cO is that associated to the transition which goes from a source state ss to a target state st for the input combination
cI . Hence, an elementary conformance test step et is defined by the following 4-tuple:

et � pss, cI , st, cOq P S � CI � S � CO

where
"
st � δpss, cIq
cO � λpss, cIq

(7)

A test sequence TS is an ordered list of elementary test steps et which must be:
P1: initializable, i.e. the source state of the first test step is the initial state of the PLC’s behavior model, and the input

combination c0I is such that the target state is stable:

2D!: There exists exactly one.
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$'&
'%
s0 � sInit

δpδps0, c0Iq, c
0
Iq � δps0, c0Iq

λpδps0, c0Iq, c
0
Iq � λps0, c0Iq

(8)

P2: consistent, i.e. the source state of the pk� 1qth elementary test step is equal to the target state of the kth elementary test
step.

TS � rps0, c0I , δps
0, c0Iq, λps

0, c0Iqq, � � � ,

psn, cnI , δps
n, cnI q, λps

n, cnI qqs |

@k ¥ 0, sk�1 � δpsk, ckI q (9)

Moreover, if the test objective is to cross at least once each transition of the Mealy machine (usual objective when the
control of critical systems is considered), the test sequence must be:

P3: complete, i.e. there is at least one test step for each element of the transition function:

@ps, cIq P pSzsInit � Iq, ps, cI , δps, cIq, λps, cIqq P TS (10)

An infinity of test sequences that satisfy the three properties P1, P2 and P3 may be constructed from a given Mealy machine.
However, to reduce the duration of the test, an optimization criterion is commonly introduced; the sequence TS must be:

P4: minimum-length, i.e. there is no initializable, consistent and complete test sequence shorter than TS:

|TS| : @ ts satisfying P1, P2 and P3, |ts| ¡ |TS| (11)

The generation of an initializable, consistent, complete and minimum-length test sequence can be automated by using the
transition tour method [25]. This optimization problem is a particular solution of a well-known problem in graph theory: the
Chinese Postman Problem [31] – or pre-Eulerian path –. The general formulation of this problem is the following: Find a
minimum-length closed path that traverses at least once each arc of a given graph. When a Mealy machine is considered, the
graph is directed, but not weighted; the optimization problem is then simplified.

For the example given in Figure 4 this complete and minimum-length test sequence contains 43 test steps; the first 15 ones
are given in the table III. It must be noted that the number of test steps of this sequence (43) is smaller than the number of
transitions of the Mealy machine (48) even if all transitions are traversed at least once. This is possible because there is no
transient evolution in the Mealy machine. Hence, two transitions pss, cI , st, cOq and pst, cI , st, cOq of the Mealy machine can
be tested during only one experimental test step defined as pss, cI , st, cOq if the duration of this step is greater than several
scanning cycles of the PLC. In that case, the inputs of the PLC under test are scanned several times during one experimental
test step and it is possible to test a first transition which corresponds to a state change provoked by the input combination cI
then a second one, self-loop on the target state of the first transition for this input combination. This interesting feature will
be developed in the section III-B when describing the execution of a test.

TABLE III
FIRST TEST STEPS OF THE MINIMUM-LENGTH TEST SEQUENCE FOR THE EXAMPLE DETAILED IN FIGURE 4.

ss: s1 s3 s2 s3 s2 s3 s2 s2 s2 s2 s3 s2 s1 s3 s2 . . .
c: 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 . . .
o: 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 . . .
r: 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 . . .
v: 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 . . .
st: s3 s2 s3 s2 s3 s2 s2 s2 s2 s3 s2 s1 s3 s2 s1 . . .

III. MINIMUM-LENGTH TEST SEQUENCE EXECUTION

In order to assess the interest of a minimum-length test sequence built from a Mealy machine for conformance test of real
industrial logic controllers, a specific test bench has been developed. This test bench is briefly described at the beginning of this
section. The experimental conditions of a conformance test are then given. As biased – rejection of a correct implementation
– and non-valid – acceptance of a non-conform implementation – test results were obtained during some tests, two series
of experiments were undertaken to pinpoint the origin of these erroneous results; they are described in the third and fourth
subsections. The section is concluded by a discussion on this phenomenon and some strategies to improve the level of confidence
in conformance test results by modifying the execution of the test or the construction of the test sequence.
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A. Presentation of the test bench

The test bench used for this work has been developed from feedback on a previous platform that was designed for discrete
event systems identification purposes [32].

This test bench (Figure 5) is built from an industrial remote input/output module (RIOM). This module (Schneider Electric
Momentum 170ENT11001) has 16 logic inputs and 16 logic outputs that can be remotely set/reset from a computer via a
Modbus TCP/IP connection. Each output of this RIOM is connected upstream from an input of the logic controller under
test (blue wires in Figure 5), while each of its inputs is connected downstream from an output of the controller (red wires in
Figure 5). This open solution provides high flexibility at a very low cost.

The logic controller under test, a modular PLC (Phoenix Contact ILC 170 ETH 2TX) was selected because of its high
reactivity (its cycle time can be set to less than 5 ms) and the compliance of its programming languages with the IEC 61131-3
standard [33].
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B. Execution of a conformance test

The code implemented in the PLC for the experiments was a Structured Text code obtained automatically from the Grafcet
specification according to the method proposed in [34]. This solution allows either to generate an a priori correct code or to
artificially introduce programming errors. Once programmed, the controller to be tested is disconnected from its programming
environment during the entire test execution.

The execution of the code implemented in a PLC relies on the PLC’s input scanning cycle. This scanning cycle can be
configured so that the code is executed either in a cyclic or in a periodic mode. In the first case (cyclic mode), once the code
has been executed by the PLC the logic outputs are immediately updated; thus, the execution time can vary from one cycle
to another. In the second case (periodic mode), the code is executed at a fixed period; thus, once the code has been executed
the PLC will wait for the end of the cyle before emitting logic outputs. Figure 6 illustrates the different steps of a periodic
execution; a similar figure can be drawn for a cyclic execution by removing the waiting pW q phase. As illustrated in this
figure, the minimum causality delay (response time) of a PLC is equal to one PLC cycle (if the logic inputs changed just
before the input scanning), while the maximal causality delay is almost equal to two PLC cycles (if the logic inputs changed
just after the input scanning).

Once the controller has been connected to the test bench and restarted, each elementary test step pss, cI , st, cOq is executed
as follows:


 The test bench applies the input combination cI to the logic inputs of the controller under test.

 Then, the test bench waits while the PLC executes its code and updates its outputs. To be sure that the outputs have been

updated, this waiting time must be at least longer than two PLC cycles (maximal value of the causality delay)

 When the controller’s outputs are updated, the test bench reads the output combination emitted by the PLC and compares

it to the expected one cO, then stores the results. The next experimental test step can start.
Hence, the duration of one experimental test step is at least equal to two PLC periods, for a periodic mode, or two times

the maximal value of the PLC cycle, for a cyclic mode. This minimal bound guarantees that each output combination update,
consequence of an input combination change, is observed. Moreover, if this duration is longer (three PLC cycles for instance),
it is possible during one experimental test step that corresponds to a theoretical test step pss, cI , st, cOq to test two successive
transitions of the Mealy machine: the transition defined by this step and the transition pst, cI , st, cOq, self-loop on the target
state of the first transition. In the case of the example of figure 4, it is possible for instance to test during one experimental
test step the transition labelled 4{2 from state s2 to state s3 and the self-loop with the same label on s3. As the PLC scans its
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Fig. 6. PLC periodic execution and maximal causality delay

inputs cyclically (in a periodic manner or with a variable scanning time), the input combination change that leads to the input
combination cI (4 in the example) provokes first a state change from ss to st (s2 to s3 in the example); this state change can
be observed after a delay equal to at most two PLC cycles. If the input combination is unchanged, the output combination
computed during the following PLC cycle will be unchanged, which corresponds to a self-loop on st with the same input and
output combinations (4{2 in the example). As the Mealy machine does not include any transient evolution, no more state or
output combination change is possible; the output combination is stable. Then, defining a duration of each experimental test
step greater or equal to three PLC cycles permits to reduce the length of the test sequence as noted in subsection II-D.

C. Robustness study – Experiment 1

As the first results were conclusive, robustness of the method was addressed by focusing on the influence of the features of
the controller under test (cyclic or periodic I/O scanning and distribution of the inputs) on the test verdict.

When performing the conformance test of a controller with a cyclic, but not periodic, I/O scanning mode (this execution mode
is the most commonly encountered in industrial applications because it improves the reactivity of the controller), erroneous
(biased and non-valid) test results were obtained. A detailed analysis of the results files showed that these errors happened
only when several inputs were changed simultaneously, from one test step to the following one. An assumption was then
put forward: the synchronous changes of the outputs of the test bench are interpreted as asynchronous by the PLC in these
cases. An example of interpretations that rely on this assumption is given in Figure 7, where two inputs are considered; as
the electrical input signals applied to the input cards of a PLC are filtered and thresholded before being converted to logic
variables used by the PLC code, theoretically synchronous signals sent by the test bench may give rise to synchronous or
asynchronous logic variables. If this assumption is true, the input combination that is used by the PLC code is not the one
planned in the test sequence and the observed output may be different from the expected one if the control code is correct;
similarly, a flawed control code may then lead to an expected, while computed from an unplanned input, output.
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Fig. 7. Possible interpretations of simultaneous changes of 2 inputs; where tf is the time delay between two filtered signals (obtained from theoretically
synchronous signals), and tPLC is the PLC cycle duration.

To check whether this assumption was true and to analyze the sensitivity of the controller to this kind of interpretation error,
the following experiment was carried out:


 A set of 8 input signals that were varying simultaneously and in an identical manner (from 0 to 1, then from 1 to 0) with
a period far greater (more than 10 times) than the maximal PLC cycle time, was sent by the test bench to the controller.
Hence, the changes (rising and falling edges) of the 8 signals were a priori totally synchronous.


 When the controller detected the first change of one of its inputs, the current value of each input was copied on the
corresponding output (8 outputs were used, each one associated to an input). Thus, the output combination was identical
to the input combination at the moment of the first input change which had been detected.


 The test bench read the output combination and compared it with the expected one, what should be identical to the input
combination, if no perception error had occurred. A counter was incremented when an error was detected, i.e. when the
output combination differed from the input one.

Table IV gives the rates of interpretation errors according to the PLC I/O scanning mode and to the distribution of inputs
on the PLC internal components (all inputs connected on the main module, all inputs connected on the secondary module,
inputs distributed on the main module and on the secondary module). These figures were obtained from series of 200,000
experiments for each mode and each distribution.

These interpretation errors can be explained because the PLC cycle and the test bench cycle are not synchronized. When
the inputs of the PLC are changed during the input reading phase of the PLC cycle, some changes may be detected but
other ones not; synchronous changes are missed in this case. In the case of inputs distributed on several modules (last two
lines of the table IV), the errors rate is increased owing to the communication protocol between the different modules of the
PLC. This protocol is indeed designed to reduce the waiting time of the processor of the main module and not to ensure
simultaneous reading of distributed inputs. Globally, this experiment showed that the assumption formulated previously to
explain the erroneous tests was plausible.

TABLE IV
RATES OF INTERPRETATION ERRORS – EXPERIMENT 1

Distribution
Configuration Cyclic Periodic Periodic

10 ms 20 ms

main module Change 0 to 1 0.062 % 0.022 % 0.014 %
Change 1 to 0 1.918 % 0.886 % 0.455 %

secondary
module

Change 0 to 1 0.104 % 0.040 % 0.020 %
Change 1 to 0 2.536 % 0.993 % 0.550 %

allocated on the
two modules

Change 0 to 1 29.17 % 39.62 % 20.23 %
Change 1 to 0 38.55 % 43.46 % 21.89 %
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D. Robustness study – Experiment 2

Nonetheless, the experiment 1 relied on a hypothesis on the changes of the input signals: their rising and falling edges
were supposed synchronous. To remove this hypothesis, a second experiment was achieved with a slightly modified test bench.
Instead of connecting each input of the PLC to a different output of the RIOM – as it is necessary to execute a conformance
test –, all inputs of the PLC were connected to a single output of the RIOM (Figure 8). Then, the same sequence of measures
was carried out.
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Fig. 8. Experimental test bench – Experiment 2

Table V gives the rates of interpretation errors for this second configuration of the test bench. These figures were obtained
from series of 500,000 experiments for each I/O scanning mode and each distribution.

The results of the last two lines of the tables IV and V are very similar and will not be discussed anymore. On the opposite,
comparison of the results of the first four lines of the table V to those obtained in the first experiment permits to conclude
that the previous hypothesis was not correct; the edges of the outputs of the test bench are not completely synchronous. This
explains why most error rates are reduced when only one output of the test bench is used; the rate for the cell at the second
line and the first column decreases from 1.918% to 0.237% for instance. However, this experiment confirms the validity of the
assumption on the PLC behavior; even when only the same signal is applied to several inputs of the PLC, a priori synchronous
changes of these inputs are sometimes perceived as asynchronous. The origin of the erroneous test results that have been
obtained with a minimum-length sequence is therefore well identified.

TABLE V
RATES OF INTERPRETATION ERRORS – EXPERIMENT 2

Distribution
Configuration Cyclic Periodic Periodic

10 ms 20 ms

main module Change 0 to 1 0.059 % 0.026 % 0.012 %
Change 1 to 0 0.237 % 0.105 % 0.048 %

secondary
module

Change 0 to 1 0.086 % 0.036 % 0.018 %
Change 1 to 0 0.429 % 0.080 % 0.095 %

allocated on the
two modules

Change 0 to 1 30.22 % 39.34 % 19.86 %
Change 1 to 0 36.63 % 42.21 % 21.20 %

E. Discussion and Guidelines

Some issues may arise when applying theoretical results based on DES (Discrete Event Systems) models, like state automata
or Mealy machines, to real PLCs. This has been already underlined in [35] and [36] when considering the implementation
of a supervisor built according to the supervisory control theory on a PLC. The issue addressed in these references was the
following one: how to implement correctly a model that was constructed with the assumption that all events are asynchronous,
i.e. only one event can occur at any date, on a PLC with cyclic (or periodic) I/O scanning? I/O scanning implies indeed that
asynchronous changes of the inputs of the PLC may be treated as synchronous if they occur during the same cycle.

The issue that was pinpointed in the previous experimental study is dual: synchronous events (input changes) may be
detected by the control code as asynchronous. This happens when these changes occur during the input reading phase of the
PLC cycle. As the inputs are not read instantaneously, some input changes may be detected at the ith cycle while other ones
will be detected only at the next cycle (Figure 7). This issue increases when the PLC cycle time decreases because the relative
duration of the input reading phase is then increased – the duration of this phase is constant for a given number of inputs –
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and the likelihood of erroneous interpretation increases; this explains why the error rates are greater in the four first lines of
the tables IV and V for the cyclic mode – the cycle time was in the range of 4 to 5 ms during the experiment.

The previous experiments have shown that using a minimum-length (usual optimization criterion) test sequence obtained
from a Mealy machine by the transition-tour method may yield spurious test results. The theoretical analysis relies indeed on
the implicit assumption that all inputs changes generated by the test bench are correctly detected by the controller under test,
even if several inputs are simultaneously modified, which is not always true.

To overcome this issue, several strategies can be considered:

 synchronization of the test bench with the controller under test;

 test execution for the configurations of the controller that lessen the error rate (periodic I/O scanning and no inputs

distribution);

 multiple execution of the same test sequence and statistical analyses of the results.

The first strategy requires additional communication between the test bench and the controller and does not correspond to the
real operation of a closed-loop system where the PLC is connected, but not synchronized, to a real plant. Therefore, the second
and third strategies are more appropriate.

IV. CONCLUSION

Even if numerous theoretical results on conformance test of Mealy machines have been published, application to conformance
test of PLCs is not completely straightforward because the technological features of these industrial components are not taken
into account in the theoretical studies. This paper has highlighted in particular that biased or non-valid test results may be
obtained when using a minimum-length test sequence because the I/O scanning cycle of the PLC provokes asynchronism
between input events that are assumed synchronous.

A promising solution to tackle out this issue is to construct a test sequence where no synchronous input events are present
by definition. However, it is not sure that an initializable, consistent and complete test sequence that satisfies this property, i.e.
where only one input is changed from any test step to the following one, can always be constructed whatever the specification
of the PLC.

REFERENCES
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